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Abstract

Recognizing the people, objects, and actions in the world around us is a
crucial aspect of human perception that allows us to plan and act in our en-
vironment. Remarkably, our proficiency in recognizing semantic categories
from visual input is unhindered by transformations that substantially alter
their appearance (e.g., changes in lighting or position). The ability to gen-
eralize across these complex transformations is a hallmark of human visual
intelligence, which has been the focus of wide-ranging investigation in sys-
tems and computational neuroscience. However, while the neural machinery
of human visual perception has been thoroughly described, the computa-
tional principles dictating its functioning remain unknown. Here, we review
recent results in brain imaging, neurophysiology, and computational neuro-
science in support of the hypothesis that the ability to support the invariant
recognition of semantic entities in the visual world shapes which neural rep-
resentations of sensory input are computed by human visual cortex.

17.1

Review in Advance first posted 
on July 27, 2018. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

01
8.

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

8/
02

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1146/annurev-vision-091517-034103
https://doi.org/10.1146/annurev-vision-091517-034103


VS04CH17_Tacchetti ARI 20 July 2018 13:53

1. INTRODUCTION

Humans effortlessly make sense of the visual world around them. We are able to quickly recognize
other people’s actions in unfamiliar surroundings and pick someone out in a crowd after a single
glance. Remarkably, human performance on these tasks is largely unaffected by those changes in the
visual appearance of objects, faces, or action sequences (e.g., changes in illumination, viewpoint,
facial expression, and even aging) that do not change their semantic category. The ability to
generalize across these complex transformations is a hallmark of human visual intelligence.

The neuroscience of vision has made great strides in describing and characterizing the com-
putations that take place in visual cortex to support human visual perception, both at the level of
single units and whole brain regions. This line of research has revealed that the primate visual
system is organized as a hierarchical succession of layers, where invariance to transformations and
selectivity to particular stimuli increase at each computational stage (Connor et al. 2007, DiCarlo
et al. 2012). Precise descriptions of the preferred stimuli within these layers have shown that vi-
sual cortex goes from representing simple oriented lines and edges in its earliest layers (Hubel
& Wiesel 1962, Gallant et al. 1993, Ringach 2002) to representing whole categories of objects,
across a wide range of transformations, in its most anterior areas (Riesenhuber & Poggio 1999,
Serre et al. 2007b, Rust & DiCarlo 2010, DiCarlo et al. 2012).

Despite access to precise characterizations of the neural machinery involved in visual perception
(Felleman & Van Essen 1991) and the availability of powerful computational models (Serre et al.
2007a, Kriegeskorte 2015, LeCun et al. 2015), little is known about why visual cortex computes
certain representations of visual inputs and not others—or, more precisely, what computational
tasks might be relevant to explain and recapitulate its functions. Here, we summarize recent results
in vision science and computer vision and organize them as four pieces of evidence in support of the
hypothesis that neural representations of visual input are constructed to facilitate the recognition
of semantic entities in a manner that is robust to complex transformations.

First, we show that representations that are explicitly designed to support this flavor of recog-
nition can reduce the amount of visual experience required to learn a new task or concept; learning
from very few examples is a hallmark trait of human visual intelligence. Second, we summarize
recent neurophysiology and brain imaging studies that reveal the presence of robust represen-
tations of human actions, faces, and objects in visual cortex. Third, we review recent studies in
computational neuroscience that exposed a positive correlation between how well artificial rep-
resentations of visual input support the invariant recognition of semantic entities and the degree
to which these representations can replicate neural correlation patterns. Finally, we summarize a
number of biological predictions that follow from our proposition and show that assuming that in-
variant recognition shapes neural representations of visual input explains a number of well-known
properties of the neural substrate of visual perception in humans and nonhuman primates.

Taken as a whole, these results suggest that supporting recognition tasks, and in particular those
that require invariance to complex transformations, is the organizing computational principle that
shapes visual cortical representations.

2. INVARIANT REPRESENTATIONS OF VISUAL INPUT

Human visual cortex is organized as a hierarchy of computational layers that transform visual input
into a representation of the outside world that is useful to the viewer and supports a variety of
perceptual tasks like recognition and navigation (Marr & Nishihara 1978). While much is known
about how visual cortex processes its sensory input, why it is that this brain region computes certain
representations and not others remains unknown. This review attempts to fill this gap, suggesting
that human early visual processing is aimed at constructing robust representations of visual input
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that support the recognition of various semantic entities like objects and faces. In this section, we
provide a primer on visual representations and formalize our claim. To this end, we abstract the
visual system to a network of cortical areas that transform an image x ∈ X into a representation

μ = f (x) 1.

that is made available to the rest of the brain for the purpose of planning, navigating, interacting,
and, in the most general terms, seeing. Given its central role in visual perception, μ must retain
certain information about x, and because f (·) is implemented by neural circuitry, it is subject to
numerous constraints (Marr 1982).

First and foremost, f (·) must be available: μ must be a direct function of the visual input x and,
crucially, the computations involved in f (·) must be plausibly implemented by neural circuitry.
Second, μ must have scope and uniqueness; in other words, μ must be good for something.
For example, it is conceivable to define an available f (·) that extracts the average color of the
upper-left corner of any input image. However, it is unlikely that an organism with such a useless
visual system would escape predators for many consecutive generations. Visual representations
must be relevant to their scope—be it recognition, navigation, or planning—and they must be,
to some extent, unique to specific stimuli: When the visual input x changes substantially, so does
μ (DiCarlo & Cox 2007). Finally, at the other end of that same spectrum, useful representations
should be stable with respect to irrelevant perturbations so that the neural response to the sight
of our best friend does not change substantially whether she is looking directly at us or slightly to
the left.

In this review, we restrict our analysis to those representations that can be computed by purely
feed-forward convolutional neural networks (CNNs) (Figure 1); f (x), in this case, takes a par-
ticular form, and the availability constraint is met. While this restriction confines our discussion
to those representations that can be constructed in the first few hundred milliseconds of neural
processing in the ventral stream, thereby excluding important neural mechanisms for perception,
such as neural feedback and top-down attention, as well as many aspects of human visual intelli-
gence, like navigation and/or spatial relational reasoning, it is appropriate to focus on these early
responses, as they account for many crucial aspects of how we as humans perceive and act in the
world (Riesenhuber & Poggio 1999, DiCarlo & Cox 2007, Serre et al. 2007a, DiCarlo et al. 2012).

x µ = f (x)

Figure 1
Schematic of a convolutional neural network. The input image x goes through layers of computations fl (·),
and the output of each layer serves as input to the next layer so that f (·) = fL◦ . . . ◦ f1(·). Each layer fl ,
shown here with a cuboid, is parametrized by a linear map Wl ∈ R

fl ×kl−1 , bias terms bl ∈ R
fl , and a

nonlinearity function σl . The architecture’s output μ = f (x) is a representation of the input image x.
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CNNs are currently the most successful and accurate artificial models of how visual cortical
representations are built. Much like neural processing in human visual cortex, computations within
CNNs are organized as a hierarchy of layers, where the output of each layer serves as input to
the next layer. Within each layer, all computational units perform the same operation on different
spatially and temporally local regions of input—most commonly, either template matching or
pooling operations. As the signal travels through the hierarchy, the size of the receptive field pro-
cessed by each individual unit increases alongside the specificity of the preferred template. Usually,
template dictionaries for convolutional layers are either learned by optimizing performance on
supervised (LeCun et al. 1989) or unsupervised (Hinton & Salakhutdinov 2006, Mutch & Lowe
2008) tasks. Recently, specific instances of this class of models achieved human-level performance
on a number of perceptual tasks (Kriegeskorte 2015, LeCun et al. 2015), like object recognition
(Krizhevsky et al. 2012, Sermanet et al. 2013) and face identification (Schroff et al. 2015).

Restricting our analysis to CNN-computable representations allows us to meet the availability
constraint illustrated above. Moreover, the notation introduced in this section lets us introduce
the specific hypothesis linking the studies summarized in the following sections in terms of a
representation’s scope and stability.

In this review, we present evidence in support of the following proposition: The particular scope
that constrains visual cortex’s output μ is that of supporting the recognition of the semantic entities,
such as objects, faces, or actions, that populate and animate a visual scene x. Simultaneously,
μ = f (x) must be invariant to identity-preserving changes in x that leave the semantics of the
visual scene, such as the identity of a person or the action someone is performing, unaltered
(Anselmi et al. 2016a, Poggio & Liao 2017). Formally, let g ∈ G be a transformation g : X → X
and let G be the set of transformations that leave the semantics of x unchanged such as rigid
translations or changes in illumination (G may or may not have a group structure). We can then
formalize our goal as follows: We present evidence supporting the notion that human visual cortex
implements some function f (·) that enjoys the property

f (x) = f (x ′) ⇔ ∃g ∈ G suchthat gx = x′, 2.

where the forward direction implies that μ = f (x) is invariant to all transformations g ∈ G and
the inverse direction ensures both that f (·) is nontrivial and that μ can be readily employed to
discriminate between any two images (x, y) ∈ X that do not lie on the same transformation orbit
(the orbit generated by x, denoted as Ox , is the set Ox = {gx}, ∀g ∈ G).

3. HISTORY OF INVARIANT REPRESENTATIONS
FOR ARTIFICIAL PERCEPTION

Invariant representations for artificial visual perception have a long history and predate CNNs.
While these approaches are not strictly related to human vision, it is worth reviewing them here.
The obvious starting point is the Fourier power spectrum, which is translation invariant and,
when discretized in the frequency domain, can be used to represent images. More recently, the
general picture processing operator (Granlund 1978) was introduced as an explicit hierarchical
decomposition, where structures rather than uniformities are carried over from one layer to the
next, so that the redundant information is lost and, throughout the layers, the representation
becomes more and more invariant to the specifics of the input image. The wavelet decomposition
(Mallat 1989) and other similar approaches, such as Laplacian and Gaussian pyramids, produce
scale- and translation-invariant representations. Steerable pyramids (Simoncelli & Freeman 1995)
were attempts to build linear representations with equivariance properties. Finally, the scattering
transform (Bruna & Mallat 2011) is a modern take on the wavelet decomposition and has provable
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robustness to rigid as well nonrigid transformations. Finally, CNNs, the class of networks we
focus on here, were initially proposed as compact neural-inspired hierarchical architectures that
enforced translation invariance over increasingly larger portions of their inputs (Fukushima 1980,
LeCun et al. 1989, Poggio & Edelman 1990).

4. THE CASE FOR INVARIANCE

In the following section, we summarize the bulk of the evidence supporting our hypothesis that
the visual representations constructed in human visual cortex are aimed at supporting invariant
recognition. We first review recent theoretical advances linking the properties of invariant rep-
resentations to the ability to learn new concepts from very few examples, a salient trait of human
visual intelligence. Second, we summarize neurophysiology and brain-imaging studies on humans
and nonhuman primates that have revealed the presence of neural representations of visual con-
cepts, like objects and actions, that are invariant to changes in viewpoint or position. Third, we
review recent results showing that, within the representations of visual input constructed with
CNNs, those that better support invariant recognition more closely match neural data. Finally,
we show that the adoption of invariant recognition as an overarching organizational principle of
visual cortex implies accurate biological predictions.

4.1. Invariance and Sample Complexity

Modern computer vision systems achieve human-level performance on a number of perceptual
tasks (Deng et al. 2009, Krizhevsky et al. 2012) and are successfully used in numerous applica-
tions. However, these architectures must be trained with millions of labeled examples to achieve
acceptable levels of accuracy. Humans, by contrast, can learn to perform complex visual tasks, like
picking someone out in a crowd or recognizing a new object in a different pose, by looking at
a single image. This wide separation in sample complexity, the number of supervised examples
required by a learning system to achieve a certain performance level, is the core divide between
human and artificial perception (Lake et al. 2016).

Recently, a series of studies (Anselmi et al. 2016b, Poggio & Anselmi 2016) has focused on
the computation of invariant representations as an important factor for explaining the remarkably
small sample complexity of human perception. The study analyzed a specific, biologically plausible
algorithm for computing representations that are selective and invariant to group transformations.
In the case of two-dimensional vision, perfect invariance can be achieved with respect to planar
transformations of an image: translation, scaling, and rotation in the image plane.

Invariance to transformations can be built in in a system and even learned from visual experi-
ence. As we review below, it has been proven that such invariance can yield significant decrease
in the sample complexity of learning. The open question is whether visual cortex computes and
exploits invariant representations. We conjecture it does.

The intuition that invariance can help reduce the complexity of learning is straightforward.
Recognition—in other words, both identification (e.g., of a specific car relative to other cars) and
categorization (e.g., distinguishing between cars and airplanes)—seems indeed much easier if the
images of objects were rectified with respect to all transformations or, equivalently, if the image
representation itself were invariant. The case of identification is obvious since the difficulty in
recognizing exactly the same object (e.g., an individual face) is due only to transformations. In the
case of categorization, consider the suggestive evidence from the classification task in Figure 2.
The figure shows that if an ideal preprocessing module (an oracle) factors out all transformations in
images of many different cars and airplanes, providing rectified images with respect to viewpoint,
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Figure 2
Sample complexity for the task of discriminating images of cars and images of airplanes from their raw pixels.
(a) Performance of a nearest-neighbor classifier (correlation distance) as a function of the number of training
examples. Error bars are ± 1 standard deviation computed over 100 random train/test splits. The solid line
indicates a rectified task. Shown is a classifier performance where all images (both train and test sets) were
rectified. The dashed line indicates the use of unrectified images. (b) Examples of rectified images.
(c) Examples of images of cars and airplanes used for this experiment. Figure adapted from Poggio &
Anselmi (2016), with permission from MIT Press.

illumination, position, and scale, the problem of categorizing cars versus airplanes becomes easy:
It can be done accurately with very few labeled examples. In this case, good performance was
obtained from a single training image of each class, using a simple classifier. In other words, the
sample complexity of the problem seems to be very low. We argue in this review that the ventral
stream in visual cortex tries to approximate such an oracle, providing a quasi-invariant signature
for images.

A qualitative argument involves estimating the cardinality of the universe of possible images
generated by different viewpoints—such as variations in scale, position, and rotation in three
dimensions (3D)—versus true intraclass variability (e.g., different types of cars). Let us try to
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estimate whether the cardinality of the universe of possible images generated by an object originates
more from intraclass variability (e.g., different types of dogs) or more from the range of possible
viewpoints, including scale, position, and rotation in 3D. Assuming a granularity of a few minutes
of arc in terms of resolution and a visual field of, say, 10◦, one would get 103–105 different images
of the same object from x, y translations, another factor of 103–105 from rotations in depth, a
factor of 10–102 from rotations in the image plane, and another factor of 10–102 from scaling.
This gives on the order of 108–1014 distinguishable images for a single object. However, how many
different distinguishable (for humans) types of dogs exist within the dog category? It is unlikely
that there are more than, say, 102–103. From this point of view, it is a much greater win to be able
to factor out the geometric transformations than the intracategory differences.

Notice that for any representation that is invariant to all transformations g ∈ G and selective
for h ∈ G ′, there may be a dual representation that is invariant to all transformations h ∈ G ′ but
selective for g ∈ G. In general, they are both needed for different tasks and both can be computed
by a CNN module with different pooling strategies. In general, the circuits computing them share
a good deal of overlap.

Invariance reduces sample complexity of learning. In a machine learning context, invariance
to image translations, for instance, can be built up trivially by memorizing examples of the specific
object in different positions. Human vision, by contrast, is clearly invariant for novel objects:
People do not have any problem recognizing, in a distance-invariant way, a face seen only once.
It is rather intuitive that representations of images that are invariant to transformations such as
scaling, illumination, and pose, just to mention a few, should allow supervised learning from many
fewer examples.

A proof of the conjecture for the special case of translation or scale or rotation is provided by
Anselmi et al. (2016b) and Poggio & Anselmi (2016). For images defined on a grid of pixels, the
result (in the case of group transformations such as translation) can be proved using well-known
relations between covering numbers and sample complexity.

Sample complexity. Sample complexity is the number of examples needed for the estimate of a
target function to be within a given error rate. In the example of the number of airplanes or cars
(Figure 2), we trained the linear classifier to perform the recognition task with a certain precision.

Sample complexity for translation invariance. Consider a space of images of dimensions p × p
that may appear in any position within a window of size rp × rp . The natural image representa-
tion yields a sample complexity (for a linear classifier) of order mimage = O(r2 p2); the invariant
representation yields a sample complexity of order

minv = O(p2). 3.

This simple observation says that, in the case of translation group, an invariant representation
can decrease the sample complexity—that is, the number of supervised examples necessary for a
certain level of accuracy in classification. A heuristic rule is that the sample complexity gain is in
the order of the number of virtual examples generated by the action of the group on a single image
(Niyogi et al. 1998).

4.2. Invariant Neural Representations

The work outlined in the previous paragraph highlighted a strong connection between recognition
performance, especially in low sample regimes, and invariant representations. These results can
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easily be extended to visual cortex, one of whose primary goals is factoring out identity-preserving
transformations. Invariant visual representations have been extensively reviewed in both the hu-
man (Grill-Spector & Weiner 2014) and nonhuman primate (DiCarlo et al. 2012) ventral streams.
In this subsection, we briefly discuss key neurophysiology and brain imaging studies, in the con-
text of the hypothesis that invariant recognition shapes which neural representations human and
nonhuman primates visual cortices compute. In particular, we review more recent work looking
beyond object recognition in the domains of invariant face and action recognition.

Single-unit physiological recording has painted a clear picture of the ventral stream of visual
cortex. This network of brain areas is organized as a series of anatomically contained regions that
transform representations of lines and edges in its earliest layer (V1) (Hubel & Wiesel 1962) to
representations of complex shapes in the top layer [inferior temporal cortex (IT)] (Desimone et al.
1984, Gross & Schonen 1992). More recently, population recording and decoding methods have
allowed researchers to test the generalization properties of neural codes (Hung et al. 2005) and
shown directly a gradual buildup of invariant representations that develop between primary visual
cortex, V4, and IT (Rust & DiCarlo 2010).

Visual cortex’s hierarchy has been most comprehensively described in the primate face patch
network (Tsao et al. 2006). Monkey IT contains a network of several patches of cells that show
strong face selectivity. Within these patches, the earliest/most posterior ones contain cells that
show a preference for low-level face properties, such as specific face views. The most anterior patch,
in contrast, contains representations that are invariant to complex, nonaffine transformations such
as changes in viewpoint. Interestingly, by recording throughout the face patch network, Freiwald
& Tsao (2010) were able to gain insight into how these invariant representations are constructed.
Cells in the middle face patches contained representations that were mirror symmetric, a logical
midpoint between view specificity and full-view invariance, providing important insights into how
invariance arises in IT (see Figure 3).

A similar hierarchical progression of selectivity and invariance has been described in the human
ventral pathway (Grill-Spector & Weiner 2014). Moreover, high-temporal-resolution noninvasive
and invasive methods have revealed a hierarchy that extends not only in space but also in time. In
fact, greater degrees of invariance to transformations progress between 60 and 150 ms (Liu et al.
2009, Carlson et al. 2013, Isik et al. 2014). These findings provide important insight into markers
for full semantic, invariant representations that have been revealed for faces and animals at 150 ms
(Thorpe et al. 1996).

Beyond static objects and faces, representations develop from simple moving lines and patterns
in macaque MT (Rust et al. 2006) to neural recordings in macaque superior temporal sulcus that
show selectivity for specific action sequences invariant to changes in actor (Singer & Sheinberg
2010). Recently, through human magnetoencephalography (MEG) decoding, it has been shown
that neural recordings can be used to discriminate the video stimuli that elicited them on the basis
of action content, across changes in actor and 3D viewpoint (Isik et al. 2017).

Taken together, these results provide compelling evidence that invariant representations of the
semantic entities that populate the visual world can be measured in humans as well as nonhuman
primate brains.

4.3. Invariant Recognition Shapes Neural Representations of Visual Input

The results just summarized show that neural representations of visual input that can efficiently
support invariant discriminative tasks are present in the primate brain and can be readily measured
with current neuroimaging and neurophysiology techniques. These findings are crucial to build
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Figure 3
(a) Side view of computer-inflated macaque cortex with six areas of face-selective cortex (red ) in the temporal
lobe, together with a connectivity graph (orange) (Tsao & Livingstone 2008). Face areas are named on the
basis of their anatomical location (AF, anterior fundus; AL, anterior lateral; AM, anterior medial; MF,
middle fundus; ML, middle lateral; PL, posterior lateral) and have been found to be directly connected to
one another to form a face-processing network (Moeller et al. 2008). Recordings from three face areas—ML,
AL, and AM—during presentations of faces at different head orientations revealed qualitatively different
tuning properties, schematized in panel b. (b) Prototypical ML neurons are tuned to head orientation (e.g., a
left profile, as shown). A prototypical neuron in AL, when tuned to one profile view, is tuned to the
mirror-symmetric profile view as well. And a typical neuron in AM is only weakly tuned to head orientation.
Because of this increasing invariance to in-depth rotation, increasing invariance to size and position (not
shown), and increased average response latencies from ML to AL to AM, it is thought that the main AL
properties, including mirror symmetry, have to be understood as transformations of ML representations and
the main AM properties as transformations of AL representations (Freiwald & Tsao 2010). Figure adapted
from Leibo et al. (2016), with permission from Elsevier.

the argument that discriminative tasks, and especially those that require invariance to complex
transformations, drive the neural computations carried out in human and nonhuman primate
visual cortex. However, they fall short of establishing a direct link between the computational
principles that drive neural representations and their biological substrate. To fill this gap, recent
studies reported that, within the CNN class, models that better support invariant discriminative
tasks also produce representations of visual stimuli that better match those implied by neural
recordings (Khaligh-Razavi & Kriegeskorte 2014, Yamins et al. 2014, Tacchetti et al. 2017a).
This observation demonstrates a connection between a representation’s ability to support invari-
ant recognition and its fidelity in replicating neural data. Importantly, these studies confirm this
effect across various recognition domains (e.g., objects and actions), different sets of stimuli (e.g.,
static images and videos), and diverse neural recording techniques [e.g., MEG, neurophysiology,
and fMRI (functional MRI)] and utilize different figures of merit to quantify the match between
artificial and biological representations (e.g., preferred stimulus ranking and representational sim-
ilarity analysis). Here, we provide a summary of these studies.

Yamins et al. (2014) recorded IT neural responses of awake and behaving monkeys while they
were fixating static images. The image stimulus set, which contained single objects floating on
naturalistic backgrounds, was designed specifically to test strong tolerance to object viewpoint
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Figure 4
Performance–IT predictivity correlation. (a) Object-categorization performance versus IT neural explained-variance percentage (IT
predictivity) for convolutional neural network models in three independent high-throughput computational experiments (each point is
a distinct neural network architecture). The x-axis shows performance (balanced accuracy, chance is 0.5) of the model output features
on a high-variation categorization task; the y-axis shows the median single-site IT explained-variance percentage (n = 168 sites) of that
model. Each dot corresponds to a distinct model selected from a large family of convolutional neural network architectures. Models
were selected by random draws from parameter space ( green dots), object-categorization-performance optimization (blue dots), or
explicit IT predictivity optimization (orange dots). (b) A high-performing neural network was identified, in pursuing the correlation
identified in panel a, that matches human performance on a range of recognition tasks, the HMO model. The object-categorization
performance versus IT neural predictivity correlation extends across a variety of models exhibiting a wide range of performance levels.
Black circles include controls and published models; red squares are models produced during the HMO optimization procedure. The
category ideal observer ( purple square) lies significantly off the main trend but is not an actual image-computable model. The r-value is
computed over red and black points. For reference, light blue circles indicate performance-optimized models (blue dots) from panel a.
Figure adapted from Yamins et al. (2014), with permission. Abbreviations: HMO, hierarchical modular optimization; IT, inferior
temporal cortex; SIFT, scale invariant feature transform.

variation. Subsequently, a CNN model was trained to solve an object classification task on a sim-
ilar stimulus set. It was found that units in the top layer of the CNN model so trained exhibited
selectivity to specific object categories (e.g., a certain unit would produce a stronger output for
images containing cars than for any other category) and a large degree of tolerance to viewpoint
or instance transformations (i.e., the strong responses would be observed regardless of the specific
make and model or specific pose of the car in the image). Interestingly, neural recordings from IT
sites exhibited similar characteristics and, by aligning artificial and biological units according to
their preferred stimuli, it was shown that units in the top layers of the CNN model accurately pre-
dicted the response of IT neurons elicited by new, unseen images. Finally, by randomly sampling
model hyperparameters to obtain different model instances, the authors were able to establish a
positive correlation between a model’s categorization performance and its ability to predict IT
neural recordings (see Figure 4).

Similar findings were reported using monkey IT neurophysiology data as well as human fMRI
recordings (Khaligh-Razavi & Kriegeskorte 2014). Specifically, the authors utilized 27 different
artificial systems and constructed, for each model, a representational similarity matrix of a fixed set
of stimuli. Likewise, they used recordings of the neural activity these stimuli elicited to construct
neural dissimilarity matrices for both humans and monkeys. Finally, they used the correlation
between the matrix constructed using each model and the two generated using neural data to
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establish a measure of agreement between artificial and neural representations. They reported that,
across the 27 models they considered, those representations that better supported categorization
between animate and inanimate objects (an invariant discriminative task) also better matched
neural correlation patterns.

Recently, these results were extended to human perception of action sequences (Tacchetti
et al. 2017a). The authors constructed four instances of spatiotemporal CNN (ST-CNN) models
to extract artificial representations of action sequences1 and, crucially, designed these models to
exhibit varying degrees of invariance to changes in viewpoint. In particular, they used a purely
convolutional model (Giese & Poggio 2003, Jhuang et al. 2007), two models with memory-based
pooling units (Leibo et al. 2011, Anselmi et al. 2016a), and one model with convolutional templates
learned by optimizing performance on an action recognition task (LeCun et al. 2015). These
models were used to extract representations of a fixed set of action videos. The same videos were
shown to human subjects while their brain activity was being recorded with an MEG scanner. Each
of the artificial representations was used to compute a dissimilarity matrix that was compared to
one constructed with human neural recordings, using a representational similarity analysis score
(Kriegeskorte et al. 2008). These results show that, within the ST-CNN class and across the model
modifications considered, those representations that better support invariant action recognition
also produce a similarity structure that better matches neural correlation patterns. These findings
effectively show that the effect described in this section does not concern only primate perception
of objects and animals in static images but extends to human perception of others’ actions in
dynamic sequences.

These results provide a direct link between performance on discriminative tasks, especially
those that require generalization across complex transformations, and the representation of visual
input that primate visual cortex computes. Importantly, throughout these studies, it is reported that
a perfect categorical oracle does not match neural correlation patterns better than convolutional
architectures. This consistent result suggests that the computational goal of visual cortex dictates
its functioning within a narrowly constrained class of architectures.

4.4. Biological Predictions

The previous paragraphs showed how invariant representations of visual input that support invari-
ant recognition tasks can be measured in the brains of live and behaving primates. Moreover, it was
established that artificial representations that better support invariant recognition better match
those implied by neural recordings and reduce the sample complexity of learning tasks. Here,
we summarize results showing that by constraining artificial models to compute representations
that support invariant recognition, one obtains architectures that explain established properties
of visual cortex. In particular, results showing that CNNs explicitly trained to support invariant
recognition successfully predict the preferred stimuli of neurons in visual areas V1 and V2 as well
as the mirror-symmetric preference to face orientation of neurons in face-selective area AL (lateral
anterior patch). Moreover, beyond the tuning properties of individual neurons, computing invari-
ant representations of visual input requires specialized modules rather than general-purpose visual
processing machinery; these domain-specific regions, like the fusiform face area, are prominent
features of the organization of visual cortex.

The preferred stimuli of individual neurons in brain area V1, the earliest cortical layer engaged
in visual perception, are well characterized by a universal shape with quantitative parameters that

1ST-CNNs are a direct extension of CNNs that work with video stimuli.

www.annualreviews.org • Invariant Recognition 17.11

Review in Advance first posted 
on July 27, 2018. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

01
8.

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

8/
02

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



VS04CH17_Tacchetti ARI 20 July 2018 13:53

hold across species. This property has been observed in cats ( Jones & Palmer 1987), macaque
monkeys (Ringach 2002), and mice (Niell & Stryker 2008). Recently, is has been shown that by
constructing a simple convolutional architecture and programming it to learn a representation
that is invariant to the translations it is exposed to during training, one obtains artificial neural
units with preferred receptive fields that match the qualitative characteristics of the universal
shape observed in cats, monkeys, and mice and, crucially, match the quantitative parameters that
hold across species. Moreover, by applying the same ideas to more complex transformations, one
obtains artificial receptive fields that resemble those preferred by monkey’s V2 neurons (Mutch
et al. 2017).

In a similar spirit, a simple CNN model of visual processing instructed to use Hebbian learning
(Hebb 1949) to efficiently to recognize faces of individuals across changes in 3D viewpoint was
found to have artificial units that exhibit a mirror-symmetric preference to face orientation (Leibo
et al. 2016). This property had been observed in macaque monkey face-selective area AL’s neurons
(Freiwald & Tsao 2010) and had yet to be accounted for by similar models of visual processing
(see Figure 5).

Beyond accurate modeling of individual units, assuming that visual cortex indeed computes
invariant-to-transformations representations of visual input implies that objects that do not trans-
form alike—for example, faces and bodies—cannot be processed efficiently by general purpose
machinery but require specialized modules (Leibo et al. 2015). This principle explains the pres-
ence of domain-specific regions, a prominent feature of visual cortex’s organization. For example,
anatomically contained networks that selectively engage in the processing of faces (Kanwisher &
Yovel 2006) or bodies (Downing et al. 2001) have been observed.

These findings show that models trained with the goal of robustness to complex transformations
can recapitulate a wide range of biological characteristics. Importantly, these results are not limited
to low-level aspects of neural functions but cover broader organizational principles as well.

5. CONCLUSIONS

We have presented an array of findings supporting the hypothesis that recognizing the semantic
category of visual stimuli across photometric, geometric, and more complex changes is the com-
putational principle dictating which representations of the outside world are computed by human
visual cortex. In particular, some of the studies summarized here show that representations of the
visual world that support invariant discrimination can be measured in the primate brain. Other
works have shown how artificial representations that support this robust recognition match em-
pirical dissimilarity structures constructed from neural data and lower the sample complexity of
learning tasks. Taken as a whole, these results provide strong support for our claim that supporting
invariant recognition is the computational goal dictating the neural computations taking place in
human visual cortex and, importantly, span the entire gamut of vision science, from computational
to theoretical and neurophysiological results.

Humans rapidly make sense of the visual world around them. We effortlessly recognize the
objects, faces, and actions that populate visual scenes, and we are capable of learning new visual
concepts from very few examples. These remarkable abilities are supported by the representations
of sensory input that our visual cortex computes in the first few hundred milliseconds of neural
processing. Understanding the computational goals and requirements that shaped this brain region
and how these relate to its neural circuitry is necessary to fully describe its most salient properties
and will pave the way for replicating its functioning in artificial systems (see the sidebar titled
Applied Invariant Representations).
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Figure 5 (Figure appears on preceding page)
(a) The structure of the models tested in panel b. (a, i ) The V1-like model encodes an input image in the C1 layer of HMAX, which
models complex cells in V1 (Riesenhuber & Poggio 1999). (a, ii ) The view-based model encodes an input image as μk(x) =
∑|G|

i=1 〈x, gi w
k〉2, where x is the V1-like encoding. ID represents identity, and K denotes the number of individuals present in the

templates. (a, iii ) The top principal components (PCs) model encodes an input image as μk(x) = ∑r
i=1 〈x, wk

i 〉2, where x is the V1-like
encoding. The term r represents the number of PCs used. (b) The test of depth-rotation invariance required discriminating unfamiliar
faces. That is, the template faces did not appear in the test set, so this is a test of depth-rotation invariance from a single example view.
(b) In each trial, two face images appear and the task is to indicate whether they depict the same or different faces. They may appear at
different orientations from each other. For classification of an image pair (a , b ) as depicting the same or a different individual, the cosine
similarity of the two representations was compared to a threshold. The threshold was varied systematically to compute the area under
the receiver operating characteristic (ROC) curve (AUC). (b, ii ) In each test, 600 pairs of face images were sampled from the set of faces
with orientations in the current testing interval. Three hundred pairs depicted the same individual, and 300 pairs depicted different
individuals. Testing intervals were [−x, x] for x = 5◦, . . . , 95◦. The radius of the testing interval x, dubbed the invariance radius, is the
abscissa. AUC declines as the range of testing orientations is widened. As long as enough PCs are used, the proposed model performs
on par with the view-based model. It even exceeds its performance if the complete set of PCs is used. Both models outperform the
baseline HMAX C1 representation. The error bars were computed over repetitions of the experiment with different template and test
sets. (c) Mirror-symmetric orientation tuning of the raw pixels–based model. 〈xθ , wi 〉 is shown as a function of the orientation of xθ .
Here, each curve represents a different PC. Shown below are the PCs wk

i , visualized as images. Figure adapted from Leibo et al. (2016),
with permission from Elsevier.

APPLIED INVARIANT REPRESENTATIONS

Invariant recognition as a framework to study perception has led to models of visual cortex that reproduce low-
level properties as well as organizational principles of the biological system they replicate. Moreover, systems that
are built following the notion that a representation of sensory input that is useful to make sense of the world
should be invariant to irrelevant transformations and support efficient recognition have been successfully applied
to artificial perception problems like object recognition (Krizhevsky et al. 2012, Soatto & Chiuso 2016), face
identification (Liao et al. 2014), texture classification (Bruna & Mallat 2011, Freeman & Simoncelli 2011), and
speech recognition (Evangelopoulos et al. 2014; Voinea et al. 2014; Zhang et al. 2014a,b). These applied results,
beyond being remarkable engineering achievements in their own merit, strengthen our claim concerning visual
cortex’s computational goal by finding a link between the proposed computational principle and the ability to solve
applied problems.

In particular, it has been shown that by letting a CNN architecture learn its templates through memorizing
video frames depicting human faces, a biologically plausible learning mechanism, and by letting its pooling units’
receptive fields span continuous video segments, one obtains a model representation that is invariant to clutter and
successfully supports face identification in a challenging benchmark data set (Liao et al. 2014).

Similarly, in speech recognition, architectures with pooling units’ receptive fields extending over changes in pitch
support discrimination between spoken digits, even across gender or age (Voinea et al. 2014). The same idea, pooling
across pitch shifts, has been applied to more sophisticated CNNs, resulting in a representation that was invariant
to changes in pitch and could significantly reduce the sample complexity in a phone- and music-classification task,
compared to a noninvariant baseline (Evangelopoulos et al. 2014; Zhang et al. 2014a,b).

Finally, wavelet-based architectures whose output is robust, although not invariant, to translations and local
deformations have been proven relevant to texture classification (Bruna & Mallat 2011).

The systems described here were designed to construct invariant representations of visual and auditory stimuli
and, remarkably, achieve state-of-the-art performance on challenging perceptual tasks. When considered in the
context of this review, the success of these methods provides strong evidence that invariant representations of
sensory input are key to solving perceptual tasks and explain abilities that are unique to human visual intelligence,
like learning from few examples and generalizing across complex transformations.

17.14 Tacchetti · Isik · Poggio

Review in Advance first posted 
on July 27, 2018. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. V

is
. S

ci
. 2

01
8.

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

8/
02

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



VS04CH17_Tacchetti ARI 20 July 2018 13:53

Much work still needs to be done for us to fully close the gap between biological perception
systems and their artificial replicas. In the following paragraphs, we highlight some of these open
questions and frame them in the context of this review.

5.1. Future Directions

5.1.1. Doing away with full supervision. The impressive recent achievements of CNN-like
artificial systems have inspired a great deal of research aimed at connecting CNNs to their biolog-
ical counterpart (Agrawal et al. 2014, Khaligh-Razavi & Kriegeskorte 2014, Yamins et al. 2014,
Mutch et al. 2017). Overall, the consensus is that these systems are accurate models of human
visual cortex and, when properly trained, quantitatively match many aspects of our visual system.
However, the vast majority of these results were obtained using CNN architectures trained with
large amounts of supervised data. In contrast, biological systems, like developing children, do not
require constant supervised input to learn useful representations of the visual world. This gap has
inspired techniques to learn with other sources of information. For instance, the results presented
by Tacchetti et al. (2017b), Hénaff et al. (2017), and Wiskott & Sejnowski (2002) suggest that
temporal continuity might be sufficient to learn invariant representations. Other ideas have been
put forward—for example, colorization, or learning to predict the color version of a black and
white image, provides an implicit supervision signal that is sufficient to learn useful representations
(Larsson et al. 2017). Likewise, inpainting, in which the values of a few pixels cut out of an image
are predicted, has been used to learn useful semantic representations (Pathak et al. 2016). Despite
these recent efforts, a definite mechanism delineating how our brain might learn to compute rep-
resentations of visual input that are invariant to complex transformations and yet selective to the
semantics of a visual scene has not yet been described.

5.1.2. Gradient-based learning. Requiring large amounts of supervision is not the only discrep-
ancy between CNNs and human development. In fact, whether and how biological systems could
implement the gradient-based learning methods used for parameter tuning in modern CNNs is
the subject of active research (Mazzoni et al. 1991, Bengio et al. 2015, Liao et al. 2015). Irrespective
of the precise biological mechanisms that could carry out performance optimization on invariant
discriminative tasks, computational studies point to its relevance to understanding neural repre-
sentations of visual scenes (Khaligh-Razavi & Kriegeskorte 2014, Yamins et al. 2014, Yamins &
DiCarlo 2016, Tacchetti et al. 2017a).

These considerations provide inspiration for new research, with potentially interesting appli-
cations. Identifying substitutes for a fully supervised supervision signal, for example, would make
large-scale learning of image representations economical. Similarly, fully understanding whether
and how biological systems might implement performance-optimization algorithms might have
biological implications well beyond visual perception.

5.1.3. Invariant recognition and sparse coding. Alongside invariant recognition, other com-
putational principles have been put forward to explain neural representations in the ventral stream.
In particular, efficient coding (Barlow 1972), especially in the form of sparsity on some function
basis (Olshausen & Field 1996), has inspired a number of successful results in modeling the re-
ceptive fields of simple cells in V1. More recently, modern CNNs like the ones discussed here
have reproduced these same results in V1 with higher accuracy and extended them throughout
the ventral stream (see Section 4.4). Further, these CNNs do not require any explicit sparsity
constraint, although the convolutional structure of the template-matching layers does impose an
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implicit sparsity pressure on the learned templates. More critically, however, the assumption un-
derlying the efficient coding hypothesis, which is apparent in the dictionary-learning framework
where it is normally used (Bell & Sejnowski 1997), is that the goal of the ventral stream is to rep-
resent the visual world with a degree of detail that affords a complete reconstruction of the scene.
The error signal that would enable learning such a representation during development, however,
seems unnatural, as we cannot readily compare visual stimuli and their reconstructions directly in
the input space. Looking ahead, it is important to note that sparsity, or efficiency, and invariant
recognition are not mutually exclusive, and a representation that is useful for recognition (and is
learned as such) can be sparse. Combining these two requirements is a direction of research that
is ripe for further exploration.

5.1.4. The role of the architecture and the need for a theory. Arguably, the most interesting
future research direction connected to the work presented here concerns the role and origin of
the convolutional and hierarchical organization of primate visual cortex itself. Throughout this
review, we have summarized recent results in support of a precise computational theory of visual
perception. All the computational evidence we have presented have made use of CNNs to model
and understand the human visual system. However, whether the well-known convolutional and
hierarchical structure typical of this brain region is necessary to compute invariant and selective
representations of visual input, and therefore a consequence of this very same computational goal,
or the architecture was determined by external factors and simply constrains the kinds of represen-
tations visual cortex could compute remains an open question (Poggio et al. 2016). This research
direction is tightly linked to the lack of a theoretical understanding of CNN-like architectures.
While these systems vastly outperform other architectures in a broad range of artificial perception
tasks, our current theoretical tools do not cover CNN-like architectures (Zhang et al. 2017a).
This knowledge gap might leave the impression that by modeling the human brain with CNNs,
we are abandoning the study of a hopelessly complex system to embrace that of another system
(Kriegeskorte 2015). However, the access to faithful and behaviorally accurate models of human
perception has allowed us to explicitly investigate various computational hypotheses, and, more-
over, much theoretical work is in progress to push the boundaries of our theoretical frameworks
to include these systems (Poggio & Liao 2017, Zhang et al. 2017b).

5.2. Final Remarks and Broad Outlook

In this review, we have sought to validate the hypothesis that supporting invariant recognition is
the chief computational goal of human visual cortex, a goal that shapes which representations of the
visual world this region computes and passes along to the rest of the visual system. In the last several
decades, this brain region has been the subject of intense investigation, an effort that produced
a detailed understanding of its function. Grounded in this knowledge, and inspired by recent
advances in artificial perception systems, the results we have presented here show that a simple
computational principle—robust recognition of semantic entities—can relate findings across the
entire gamut of vision science. These connections will hopefully accelerate our understanding of
human visual intelligence and catalyze its replication in artificial systems.
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